Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Itzler, Mark A.; McIntosh, K. Alex; Bienfang, Joshua C. (Ed.)
-
Single-photon sensitive image sensors have recently gained popularity in passive imaging applications where the goal is to capture photon flux (brightness) values of different scene points in the presence of challenging lighting conditions and scene motion. Recent work has shown that high-speed bursts of single-photon timestamp information captured using a single-photon avalanche diode camera can be used to estimate and correct for scene motion thereby improving signal-to-noise ratio and reducing motion blur artifacts. We perform a comparison of various design choices in the processing pipeline used for noise reduction, motion compensation, and upsampling of single-photon timestamp frames. We consider various pixelwise noise reduction techniques in combination with state-of-the-art deep neural network upscaling algorithms to super-resolve intensity images formed with single-photon timestamp data. We explore the trade space of motion blur and signal noise in various scenes with different motion content. Using real data captured with a hardware prototype, we achieved superresolution reconstruction at frame rates up to 65.8 kHz (native sampling rate of the sensor) and captured videos of fast-moving objects. The best reconstruction is obtained with the motion compensation approach, which achieves a structural similarity (SSIM) of about 0.67 for fast moving rigid objects. We are able to reconstruct subpixel resolution. These results show the relative superiority of our motion compensation compared to other approaches that do not exceed an SSIM of 0.5.more » « less
-
null (Ed.)Single-photon avalanche diodes (SPADs) are a rapidly developing image sensing technology with extreme low-light sensitivity and picosecond timing resolution. These unique capabilities have enabled SPADs to be used in applications like LiDAR, non-line-of-sight imaging and fluorescence microscopy that require imaging in photon-starved scenarios. In this work we harness these capabilities for dealing with motion blur in a passive imaging setting in low illumination conditions. Our key insight is that the data captured by a SPAD array camera can be represented as a 3D spatio-temporal tensor of photon detection events which can be integrated along arbitrary spatio-temporal trajectories with dynamically varying integration windows, depending on scene motion. We propose an algorithm that estimates pixel motion from photon timestamp data and dynamically adapts the integration windows to minimize motion blur. Our simulation results show the applicability of this algorithm to a variety of motion profiles including translation, rotation and local object motion. We also demonstrate the real-world feasibility of our method on data captured using a 32x32 SPAD camera.more » « less
An official website of the United States government

Full Text Available